首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   12篇
  国内免费   4篇
测绘学   29篇
大气科学   46篇
地球物理   142篇
地质学   240篇
海洋学   50篇
天文学   78篇
自然地理   24篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   13篇
  2014年   14篇
  2013年   23篇
  2012年   7篇
  2011年   26篇
  2010年   30篇
  2009年   23篇
  2008年   17篇
  2007年   27篇
  2006年   21篇
  2005年   23篇
  2004年   18篇
  2003年   14篇
  2002年   24篇
  2001年   15篇
  2000年   7篇
  1999年   15篇
  1998年   5篇
  1997年   6篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1991年   17篇
  1990年   8篇
  1989年   9篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1983年   7篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1977年   6篇
  1976年   8篇
  1975年   5篇
  1971年   5篇
  1969年   4篇
  1966年   6篇
  1965年   4篇
  1964年   6篇
  1962年   4篇
  1960年   6篇
  1956年   4篇
  1952年   5篇
  1949年   4篇
  1948年   5篇
排序方式: 共有609条查询结果,搜索用时 125 毫秒
21.
22.
In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.  相似文献   
23.
Compositional zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) deposit in western Germany (12.9 ka) are reported. These rocks represent the cooler outer portion and crystal-rich products of a cooling magma reservoir at upper crustal levels. Major and trace-element difference between cores and rims in sanidine crystals represent two generations of crystal growth separated by unmixing of a carbonate melt. Trace-element differences measured by LA–ICP–MS are in accordance with silicate–carbonate unmixing. Across the core–rim boundary, we extracted gray-scale profiles from multiple accumulations of back-scattered electron images. Gray scales directly represent K/Na ratios owing to low concentrations of Ba and Sr (<?30 ppm). Diffusion gradients are modeled to solve for temperature using known pre-eruptive U–Th zircon ages (0–20 ky) of each sample (Schmitt et al., J Petrol 51:1053–1085, 2010). Estimated temperatures range from 630 °C to 670 °C. For the exsolution boundaries, a diffusive homogenization model is constrained by the solvus temperature of ~ 712_725 °C and gives short time scales of only 15–50 days. Based on our results, we present a model for the temperature–time history of these rocks. The model also constrains the thermal variation across the cooling crystal-rich carapace of the magma reservoir over 20 ka and suggests a thermal reactivation of cumulates, the cooling carapace, and probably the entire system only a few years prior to the explosive eruption of the remaining molten core of the phonolitic magma reservoir.  相似文献   
24.
25.
26.
27.
The40Ar-39Ar degassing spectra of white micas and amphiboles from three tectonic units of the central Tauern Window (Pennine basement and cover in the Eastern Alps) have been measured. White micas are classified as (1) pre-Alpine low-Si relic micas with an age value of 292 Ma, variously disturbed by the Alpine metamorphism; (2) Alpine phengitic micas of variable composition with an age between 32 and 36 Ma; (3) Alpine low-Si micas with a maximum age of 27 Ma. We attribute the higher Alpine ages to a blueschist facies event, whereas the lower age reflects the late cooling of the nappe pile. Blueschist facies phengites from the basement (Lower Schieferhülle) and the tectonic cover (Upper Schieferhülle) crystallized at a temperature below the closure temperature (T c) for argon diffusion in white mica and record ages of 32 to 36 Ma. At the same time a thin, eclogite facies unit (Eclogite Zone) was thrust between the Lower and the Upper Schieferhülle and cooled from eclogite facies conditions at about 600°C at 20 kbar to blueschist facies conditions at 450°C or even 300°C at >10 kbar. Eclogite facies phengites closed for argon diffusion and record cooling ages, coinciding with the crystallization ages in the hanging and the footwall unit. Amphibole age spectra (actinolite, glaucophane, barroisite) are not interpretable in terms of geologically meaningful ages because of excess argon.  相似文献   
28.
Zusammenfassung Das hier vorgestellte Modell basiert auf der Annahme, daß sich unter großen Landmassen, wie Pangäa zum Beispiel, in tektonischen Ruheperioden Wärme aus dem Erdinneren anstaut. Infolgedessen entwickelte sich vom Perm bis zur Kreide ein weites Konvektionstumorsystem; Pangäa zersplitterte und die kontinentalen Platten bewegten sich vom afrikanischen Zentrum weg. Die ozeanischen Rücken des Atlantiks und Indiks folgten den abwandernden Platten wie sich »öffnende Ringe«. Panthalassa, der Eo-Pazifik, wurde von allen Seiten überdriftet. Es muß einen Gegenstrom vom Pazifik im Mantel geben, welcher für die Auffüllung der zwischen den Pangäabruchstücken entstehenden ozeanischen Räume mit Mantelmaterial sorgt. Auch die ozeanischen Platten des Pazifiks bewegen sich vom zentralen »Darwin-Rise« weg. Der ostpazifische Rükken folgte der Bewegung und bildet heute einen ausgedehnten ostwärts gekrümmten Bogen. In den ozeanischen »Außenbögen« bildeten sich infolge der Dehnung Querrifts. Die Transformstörungen sind in beiden Systemen radial angeordnet. Die Terrains an Nordamerikas Westküste können nur östlich eines ostpazifischen Rückens aus ihrer ursprünglichen Position im zentralen Pazifik herausgewandert sein, also synchron mit dem sich öffnenden Pazifik. Die Kontinente bewegen sich möglicherweise solange von ihrer ursprünglichen Position weg, bis erneut eine große Landmasse zusammengedriftet ist. Unterhalb einer solchen »Neogäa« könnte sich wieder ein Konvektionstumor infolge von Wärmestau entfalten. Das findet vielleicht in Intervallen von einigen hundert Millionen Jahren statt und könnte die WILSON-Zyklen der Erdgeschichte erklären.
The tectonic evolution of the earth from Pangea to the present a plate tectonic model
The model proposed here is based on the assumption that beneath giant landmasses (e.g. Pangea) heat from the inner earth is stored up and accumulated during periods of tectonic inactivity. Consequently below Pangea a huge convection bulge system developed from the Permian to the Cretaceous; Pangea split up and the continental plates moved away from the African centre. The oceanic ridges of the Atlantic and the Indic also followed the movement of the withdrawing continents like »opening rings«. The oceanic ridges always maintained their position in the middle of the spreading oceans above unidirectional flows in the upper mantle. Panthalassa which surrounded Pangea, was over-drifted from all sides. Since the »expansion« of Pangea is continuing even today, there must be a counter current of mantle material from the Pacific area, compensating the gaps between the fragments of Pangea. Consequently at the subduction zones a suction should exist, which pulls the Pacific plates under the advancing plates of the former Pangean continent. In the centre of Panthalassa another bulge from the upper mantle developed simultaneously with the bulge under Pangea. The Pacific oceanic plates moved away outwards from this central »Darwin rise«. The Eastpacific ridge also followed this movement eastwards and forms today a wide, ringlike arc. In the outer arcs of the Pangean and Pacific spreading ocean systems transverse ridges developed as a result of the extension of the older oceanic crust. The transform faults are radial structures in both »expanding« systems. The hotspot spurs of the Hawaii and Polynesian islands can be explained as the result of material derived from an independent slowly ESE moving deeper part of the mantle. The terrains on North Americas West cost moved away from their original position in the central Pacific ocean synchronously with the opening ocean on the east side of the advancing East Pacific ridge.The energy which drives the whole system is residual plus radioactive heat. Kinetic movements compensate the heat surplus of the earth. The continental plates of the Pangean system are moving away from their original position until a new giant landmass is formed by collision. Below such a stationary »Neogea« a heat bulge can develop again. This may take place perhaps in intervals of hundred of million years, explaining the WILSON-cycles in earth history.

Résumé Le modèle présenté ici est basé sur l'hypothèse qu'endessous des grandes masses continentales — comme la Pangée p.ex. - il s'accumule, pendant les périodes de calme tectonique, de la chaleur d'origine interne. En conséquence, depuis le Permien jusqu'au Crétacé, un vaste système de convection s'est développé; la Pangée s'est morcelée et les plaques continentales se sont éloignées du centre africain. Les dorsales océaniques circum-africaines ont suivi le mouvement de ces plaques à la manière d'»anneaux concentriques«. La Panthalassa, précurseur du Pacifique, a été chevauchée de tous les côtés. Il doit s'être établi, dans le manteau, à partir du Pacifique, un contre-courant qui compense l'ouverture des océans en formation entre les fragments de la Pangée. Le Pacifique a donné lieu, lui aussi, à une expansion centrifuge; la dorsale est-pacifique a suivi le mouvement et forme aujourd'hui un arc bombé vers l'est. Dans les arcs océaniques extérieurs, l'expansion a provoqué la formation de dorsales transverses. Les failles transformantes montrent, dans les deux systèmes, des dispositions radiales. Les terrains de la côte W de l'Amérique du N ne peuvent provenir que d'une région située à l'Est de la dorsale est-pacifique dans sa position d'origine. Les continents s'éloigment et forme aujourd'hui un arc bombé vers l'est. Dans les arcs océaniques extérieurs, l'expansion a provoqué la forSous une telle »Néogée«, une nouvelle cellule de convection pourrait ensuite se développer. Ces phénomènes pourraient se dérouler dans un intervalle de quelques centaines de millions d'années, expliquant ainsi les cycles de Wilson dans l'histoire de la Terre.

. , , . , , . ; . - , « ». — -. , . . - , . « » , , . . - , . . . , , , , . «-» . , , , , , .
  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号